
DIGIEDUHACK SOLUTION CANVAS

Title of the solution:

Challenge addressed:

Team name:

Challenge category:

Solution description Target group

Innovativeness

Describe it in a tweet

Transferability

Context

Impact

Sustainability

Team work

Describe your solution in a short catchy way in maximum 280
characters

What makes your solution different and original?
Can anything similar be found on themarket? How innovative is it?

Can your solution be used in other contexts?
What parts of it can be applied to other context?

What is your plan for the implementation of the solution and how
do you see it in the mid- and long term?

Explain why you are the perfect team to develop this work and what
are the competencies you all bring in so the solution is developed
successfully. How well did you work as a team?
Could you continue to work as a team in the future?

Who is the target group for your solution?
Who will this solution affect and how?
How will they benefit?

What is the impact of your solution? How do you measure
it?

Please describe your solution, its main elements and objectives as
well as a brief implementation plan with some key overall
milestones, resources required and eventual barriers foreseen. What
is your final product/service/tool/activity? How could the solution be
used to enhance digital education in the your challenge area? How
could the successof the solution be measured? How will the solution
provide benefits to the challenge owner?

What is the problem you are facing?
What is the challenge that you are solving?

Conn Lee
How to use drone image & GIS to recreate your city in minecraft?
Drone tech & machine learning brings education & participatory urban planning to whole new level!
#Dronecraft #Drone4Edu

Title: Leveraging Drone Technology for Integrated Environmental Mapping and Minecraft
Visualization

Context:
In an era dominated by technological advancements, the intersection of drones, GIS
(Geographic Information System), and video games presents a groundbreaking opportunity
for immersive and interactive educational experiences. This project seeks to utilize drone
technology for aerial data collection and subsequent integration with GIS and Minecraft for
educational, urban planning, public engagement, academic research, and government public
consultation purposes.

Target:
The primary target audience includes urban planners, researchers, municipal governments,
planning authorities, students, children, and elderly.

Public actors are able to instrumentalize the tool to facilitate the engagement of the laymen
in participatory planning exercises.

Community organizations can initiate co-creation workshops and formulate land-use
planning proposals with the input of community members through gaming.

Children and the elderly with limited technical knowledge and/or digital literacy can be
empowered by the tool in contributing their ideas to land use planning.

This innovative solution aims to provide a comprehensive and accessible platform for
understanding and interacting with geographical data by way of gamification, allowing for a
more equitable and creative public engagement pathway to land-use planning.

Solution:
The process involves using drones to collect high-resolution footage and images of the
urban built environment, followed by data processing in ArcGIS to categorize and label
various geographical and urban landscape features. The creation of a fishnet grid aids in
organizing the data spatially. This data is then imported into Minecraft, offering a visually
immersive experience where users, particularly laymen such as children, the elderly, and
local inhabitants, can explore and interact with a digital replica of the real-world environment.
Urban planners who wish to collect ideas and inputs from the general public can capitalize
the gaming experience to gather feedback and counter-proposals, supporting deliberative
processes. Urban planning workshops and consultation sessions can be held at the
community level with the aid of the tool in order to incentivize public participation of those
who often experience exclusion from the institutional decision-making mechanism.

Educators can design pedagogical exercises with the tool to encourage peer-to-peer
learning for subjects like geography, urban design, and public space.

Impact:
The quality of public engagement in land-use planning processes is alleviated through
interactive virtual environments, which is more digestible than blueprints and technical
documents.

Urban planners can utilize the platform to harness the potential and creativity of the users
and to create inclusive urban designs that cater the needs of different community members.

Disadvantaged groups, such as people with disabilities, women and girls, and racialized
persons, can overcome accessibility barriers by interacting in a virtual space which
reanimates the real-world environment, ensuring their right to participate in redesigning
urban space.

Municipal governments, planning authorities, and public consultancy professionals can
gain a powerful tool for transparent and inclusive decision-making, while increasing levels of
participation, efficiency and accountability in urban planning.

In the education sector, students can gain hands-on experience with drone technologies
and geodata processing methods, enhancing their STEM and problem-solving skills.
Academic researchers benefit from a richer dataset of community perception and feedback
related to land-use planning.

Innovativeness:
This project is innovative in its seamless integration of drone technology, GIS, and Minecraft.
The combination of real-world data capture, spatial analysis, and immersive visualization can
be used to communicate technical information to the public, provide access to information
that was previously only provided to experts and governments, and crowdsource information
and feedback directly from participants. The data collected from drone images reinforces
tangibility and authenticity of the simulation. It further enables a bottom-up and
community-based approach in land-use planning by lowering the knowledge threshold to
land-use planning and reducing the accessibility barriers to use urban space. The tool can fill
in the epistemological gap between planning practitioners and laymen, such as children and
the elderly, through gamification.

Transferability:
The methodology employed is adaptable to various contexts and environments. It can be
applied globally, regardless of climatic and cultural constraints, providing a versatile tool for
education, planning, and research in different geographical and cultural settings. The use of

drone technology and data processing software, when adequately applied, has the potential
of minimizing the cost of recreating the built environment in the virtual space.

Sustainability:
The project's sustainability lies in its ability to evolve with technological advancements. As
GIS and geodata processing technologies progress, the tool can be updated and expanded.
Educational institutions, urban planning departments, and local governments can integrate
this solution as a part of public consultation and participatory mechanism into their long-term
land-use strategies for continuous benefit.

Teamwork:
The success of this project hinges on collaboration between drone operators, GIS
specialists, software developers, educators, and urban planners. A multidisciplinary team
ensures the seamless execution of each phase, from data collection to visualization.

In conclusion, this innovative integration of drone technology, GIS, and Minecraft holds
immense potential for transformative educational experiences, urban planning, research,
and public engagement. The project's adaptability, sustainability, and collaborative nature
underscore its potential as a pioneering solution for diverse applications and audiences.

Source: UN Habitat, USING MINECRAFT FOR YOUTH PARTICIPATION IN URBAN
DESIGN AND GOVERNANCE, p.3
https://unhabitat.org/sites/default/files/download-manager-files/Using%20Minecraft%20for%2
0Youth%20Participation%20in%20Urban%20Design%20and%20Governance.pdf

https://unhabitat.org/sites/default/files/download-manager-files/Using%20Minecraft%20for%20Youth%20Participation%20in%20Urban%20Design%20and%20Governance.pdf
https://unhabitat.org/sites/default/files/download-manager-files/Using%20Minecraft%20for%20Youth%20Participation%20in%20Urban%20Design%20and%20Governance.pdf

Innovative Mapping: Aerial Intelligence Meets Virtual Realms for Education and Planning

Conn L.H. Lee

Samuel T.C.Kong

Conte t

In an era dominated tec nological advancements t e intersection of

drones IS eograp ic Information S stem and video games

presents a ground rea ing opportunit for immersive and interactive

educational e periences.

T is pro ect see s to utili e drone tec nolog for aerial data collection

and su se uent integration it IS and Minecraft for educational

ur an planning pu lic engagement academic researc and

government pu lic consultation purposes.

 armoni ing cutting edge tec nologies t is initiative pioneers a ne

frontier in education ur an planning and pu lic interaction. T e

s nerg of drones IS and Minecraft not onl provides a novel

educational platform ut also empo ers diverse sta e olders in

s aping and understanding t eir environment fostering a more

engaged and informed societ .

Target

T e primar target audience includes ur an planners researc ers
municipal governments planning aut orities students c ildren and
elderl .

Public actors are a le to instrumentali e t e tool to facilitate t e
engagement of t e la men in participator planning e ercises.

Community organizations can initiate co creation or s ops and
formulate land use planning proposals it t e input of communit
mem ers t roug gaming.

Children and t e elderly it limited tec nical no ledge and or digital
literac can e empo ered t e tool in contri uting t eir ideas to land
use planning.

T is innovative solution aims to provide a compre ensive and accessi le
platform for understanding and interacting it geograp ical data

a of gamification allo ing for a more e uita le and creative pu lic
engagement pat a to land use planning.

Solution
T e process involves using drones to collect ig resolution footage and

images of t e ur an uilt environment follo ed data processing in

Arc IS to categori e and la el various geograp ical and ur an

landscape features. T e creation of a fis net grid aids in organi ing t e

data spatiall . T is data is t en imported into Minecraft offering a

visuall immersive e perience ere users particularl la men suc as

c ildren t e elderl and local in a itants can e plore and interact it

a digital replica of t e real orld environment.

rban lanners o is to collect ideas and inputs from t e general

pu lic can capitali e t e gaming e perience to gat er feed ac and

counter proposals supporting deli erative processes. r an planning

or s ops and consultation sessions can e eld at t e communit

level it t e aid of t e tool in order to incentivi e pu lic participation

of t ose o often e perience e clusion from t e institutional

decision ma ing mec anism. ducators can design pedagogical

e ercises it t e tool to encourage peer to peer learning for su ects

li e geograp ur an design and pu lic space.

Impact
T e ualit of pu lic engagement in land use planning processes is alleviated

t roug interactive virtual environments ic is more digesti le t an

lueprints and tec nical documents.

rban lanners can utili e t e platform to arness t e potential and creativit

of t e users and to create inclusive ur an designs t at cater t e needs of

different communit mem ers.

isad antaged grou s suc as people it disa ilities omen and girls and

raciali ed persons can overcome accessi ilit arriers interacting in a virtual

space ic reanimates t e real orld environment ensuring t eir rig t to

participate in redesigning ur an space.

unici al go ernments planning aut orities and pu lic consultanc

professionals can gain a po erful tool for transparent and inclusive

decision ma ing ile increasing levels of participation efficienc and

accounta ilit in ur an planning.

In t e education sector students can gain ands on e perience it drone

tec nologies and geodata processing met ods en ancing t eir STEM and

pro lem solving s ills. cademic researchers enefit from a ric er dataset of

communit perception and feed ac related to land use planning.

Innovativeness

T is pro ect is innovative in its seamless integration of drone

tec nolog IS and Minecraft. T e com ination of real orld data

capture spatial anal sis and immersive visuali ation can e used to

communicate tec nical information to t e pu lic provide access to

information t at as previousl onl provided to e perts and

governments and cro dsource information and feed ac directl from

participants.

T e data collected from drone images reinforces tangi ilit and

aut enticit of t e simulation. It furt er ena les a ottom up and

communit ased approac in land use planning lo ering t e

no ledge t res old to land use planning and reducing t e accessi ilit

arriers to use ur an space. T e tool can fill in t e epistemological gap

et een planning practitioners and la men suc as c ildren and t e

elderl t roug gamification.

Transfera ilit

T e met odolog emplo ed is adapta le to various conte ts and

environments. It can e applied glo all regardless of climatic and

cultural constraints providing a versatile tool for education planning

and researc in different geograp ical and cultural settings.

T e use of drone tec nolog and data processing soft are en

ade uatel applied as t e potential of minimi ing t e cost of

recreating t e uilt environment in t e virtual space.

T is adapta le met odolog transcends geograp ical and cultural

oundaries offering a universall applica le solution. efficientl

leveraging drone tec nolog and data processing soft are t e initiative

not onl en ances glo al accessi ilit ut also demonstrates economic

efficienc minimi ing t e financial investments re uired for virtual

environment replication.

Sustaina ilit

T e pro ect s sustaina ilit lies in its a ilit to evolve it
tec nological advancements. As IS and geodata processing
tec nologies progress t e tool can e updated and e panded.

Educational institutions ur an planning departments and local
governments can integrate t is solution as a part of pu lic
consultation and participator mec anism into t eir long term
land use strategies for continuous enefit.

urt ermore t e diverse e pertise it in t e colla orative team
guarantees a nuanced understanding of eac pro ect facet
promoting efficienc and innovation.

it adapta ilit oven into its core t e pro ect not onl meets
current needs ut stands resilient in t e face of evolving
tec nological landscapes ensuring a lasting impact on education
ur an development and societal engagement.

Team or

T e success of t is pro ect inges on colla oration et een drone
operators IS specialists soft are developers educators and ur an
planners. A multidisciplinar team ensures t e seamless e ecution of eac
p ase from data collection to visuali ation.

In conclusion t is innovative integration of drone tec nolog IS and
Minecraft olds immense potential for transformative educational
e periences ur an planning researc and pu lic engagement. T e
pro ect s adapta ilit sustaina ilit and colla orative nature underscore
its potential as a pioneering solution for diverse applications and
audiences.

T is s m iotic colla oration not onl en ances pro ect efficienc ut also
reflects a for ard t in ing approac to comple pro lem solving. it
adapta ilit ingrained t e initiative is poised to redefine educational
paradigms ur an planning met odologies and researc landscapes ile
fostering inclusive pu lic engagement. Its impact resonates across diverse
sectors promising a lasting and influential legac .

ridging t e gap…

 Ha itat as een e perimenting it Minecraft for inclusive

participation ur an design since .

T ere is a great potential for gamification…

ur tool tries to connect drone images it minecraft

developing an automated mac ine learning algorit m ic

processes and categori es t e data collected drones.

T an ou

Classify Building Conditions in Zanzibar from
Drone Imagery

In [1]:

In [2]:

In [4]:

```text
=== Software === 
python version  : 3.6.6
fastai version  : 1.0.33
torch version   : 1.0.0.dev20181114
nvidia driver   : 410.48
torch cuda ver  : 9.2.148
torch cuda is   : available
torch cudnn ver : 7104
torch cudnn is  : enabled

=== Hardware === 
nvidia gpus     : 1
torch available : 1
 - gpu0        : 16278MB | Quadro P5000

=== Environment === 
platform        : Linux-4.4.0-130-generic-x86_64-with-debian-stretch-sid
distro          : #156-Ubuntu SMP Thu Jun 14 08:53:28 UTC 2018
conda env       : Unknown
python          : /opt/conda/envs/fastai/bin/python
sys.path        : 
/opt/conda/envs/fastai/lib/python36.zip
/opt/conda/envs/fastai/lib/python3.6
/opt/conda/envs/fastai/lib/python3.6/lib-dynload
/opt/conda/envs/fastai/lib/python3.6/site-packages
/opt/conda/envs/fastai/lib/python3.6/site-packages/IPython/extensions
/root/.ipython
```

Please make sure to include opening/closing ``` when you paste into forum
s/github to make the reports appear formatted as code sections.

Optional package(s) to enhance the diagnostics can be installed with:
pip install distro
Once installed, re-run this utility to get the additional information

%reload_ext autoreload
%autoreload 2
%matplotlib inline

from fastai import *
from fastai.vision import *

from fastai.utils import *
show_install()

Prepare Data

In [5]:

In [6]:

In [7]:

In [8]:

In [9]:

In [10]:

20176

Out[7]: [PosixPath('/storage/classify-data/images/grid043_04750_Empty.jpg'),
PosixPath('/storage/classify-data/images/grid058_05520_Empty.jpg'),
PosixPath('/storage/classify-data/images/grid029_00149_Complete.jpg'),
PosixPath('/storage/classify-data/images/grid042_02150_Empty.jpg'),
PosixPath('/storage/classify-data/images/grid035_00463_Foundation.jpg')]

20176

Out[8]: ['grid001_00001_Complete.jpg',
'grid001_00002_Complete.jpg',
'grid001_00003_Complete.jpg',
'grid001_00004_Complete.jpg',
'grid001_00005_Complete.jpg']

Out[9]: fnames

0 grid001_00001_Complete.jpg

1 grid001_00002_Complete.jpg

2 grid001_00003_Complete.jpg

3 grid001_00004_Complete.jpg

4 grid001_00005_Complete.jpg

path = Path('/storage/classify-data')

path_img = path/'images'

fnames = get_image_files(path_img)
print(len(fnames))
fnames[:5]

filter out empty jpg files by size>0 and sort
fnames = [fname.name for fname in sorted(fnames) if os.path.getsize(fname)>0
print(len(fnames))
fnames[:5]

df = pd.DataFrame(fnames,columns=['fnames'])
df.head()

hand-picked val grids
holdout_grids = ['grid028_','grid029_','grid042_','grid058_']
valid_idx = [i for i,o in df.iterrows() if any(c in str(o.fnames) for c in h

In [11]:

In [12]:

In [13]:

In [55]:

In [56]:

In [57]:

Out[11]: fnames

7432 grid028_00000_Empty.jpg

7433 grid028_00001_Complete.jpg

7434 grid028_00002_Complete.jpg

7435 grid028_00003_Complete.jpg

7436 grid028_00004_Complete.jpg

Out[56]: ImageDataBunch;

Train: LabelList
y: CategoryList (14833 items)
[Category Complete, Category Complete, Category Complete, Category Complet
e, Category Complete]...
Path: /storage/classify-data
x: ImageItemList (14833 items)
[Image (3, 428, 920), Image (3, 184, 187), Image (3, 197, 196), Image (3,
157, 157), Image (3, 185, 188)]...
Path: /storage/classify-data;

Valid: LabelList
y: CategoryList (5343 items)
[Category Empty, Category Complete, Category Complete, Category Complete,
Category Complete]...
Path: /storage/classify-data
x: ImageItemList (5343 items)
[Image (3, 243, 179), Image (3, 298, 234), Image (3, 186, 221), Image (3,
300, 181), Image (3, 176, 184)]...
Path: /storage/classify-data;

Test: None

Out[57]: ['Complete', 'Incomplete', 'Foundation', 'Empty']

df.iloc[valid_idx].head()

pulled out of fastai/data.py
pat = r'([^_]+).jpg$'
pat = re.compile(pat)
def get_label(fn): return pat.search(str(fn)).group(1)

src = (ImageItemList.from_df(df, folder='images', path=path)
 .split_by_idx(valid_idx)
 .label_from_func(get_label, classes=['Complete', 'Incomplete', 'Foun

bs = 32
sz = 512
tfms = get_transforms(flip_vert=True, max_rotate=0.2, max_warp=0., max_zoom=
data = (src.transform(tfms, size=512, resize_method=ResizeMethod.SQUISH, pad
 .databunch(bs=bs)
 .normalize(imagenet_stats))

data

data.train_ds.classes

In [58]:

Empty /storage/classify-data/images/grid028_00000_Empty.jpg

Complete /storage/classify-data/images/grid028_00001_Complete.jpg

Complete /storage/classify-data/images/grid028_00002_Complete.jpg

Complete /storage/classify-data/images/grid028_00003_Complete.jpg

for i in range(5):
 print(data.valid_ds.classes[data.valid_ds.y[i].data], data.valid_ds.item
 data.valid_ds.x[i].show()
 plt.show()

In [59]:

Complete /storage/classify-data/images/grid028_00004_Complete.jpg

data.show_batch(rows=4, figsize=(12,12))

In [60]:

In [61]:

In [63]:

Out[61]: <fastai.layers.FlattenedLoss at 0x7f5274a9d400>

data.show_batch(rows=4, figsize=(12,12), ds_type=DatasetType.Valid)

data.loss_func

learn = create_cnn(data, models.resnet50, metrics=error_rate)

In [64]:

In [65]:

In [67]:

LR Finder is complete, type {learner_name}.recorder.plot() to see the grap
h.

learn.lr_find()
learn.recorder.plot()

lr = 1e-2

from fastai.callbacks import *

small change to SaveModelCallback() to add printouts
@dataclass
class SaveModelCallbackVerbose(TrackerCallback):
 "A `TrackerCallback` that saves the model when monitored quantity is bes
 every:str='improvement'
 name:str='bestmodel'
 def __post_init__(self):
 if self.every not in ['improvement', 'epoch']:
 warn(f'SaveModel every {self.every} is invalid, falling back to
 self.every = 'improvement'
 super().__post_init__()

 def on_epoch_end(self, epoch, **kwargs:Any)->None:
 if self.every=="epoch": self.learn.save(f'{self.name}_{epoch}')
 else: #every="improvement"
 current = self.get_monitor_value()
 if current is not None and self.operator(current, self.best):
 self.best = current
 self.learn.save(f'{self.name}')
 print(f'saved model at epoch {epoch} with {self.monitor} val

 def on_train_end(self, **kwargs):
 if self.every=="improvement": self.learn.load(f'{self.name}')

In [68]:

In [69]:

Total time: 1:17:00

epoch train_loss valid_loss error_rate

1 0.373114 0.239636 0.088153

2 0.364517 0.273235 0.092645

3 0.339809 0.367768 0.138686

4 0.336729 0.265249 0.097885

5 0.302687 0.227810 0.077859

6 0.299651 0.206304 0.073367

7 0.260983 0.184381 0.065693

8 0.259397 0.478516 0.064009

9 0.219406 0.172479 0.061576

10 0.227847 0.245279 0.061202

saved model at epoch 1 with error_rate value: 0.08815272152423859
saved model at epoch 5 with error_rate value: 0.07785888016223907
saved model at epoch 6 with error_rate value: 0.07336702197790146
saved model at epoch 7 with error_rate value: 0.0656934306025505
saved model at epoch 8 with error_rate value: 0.06400898098945618
saved model at epoch 9 with error_rate value: 0.06157589331269264
saved model at epoch 10 with error_rate value: 0.06120157241821289

learn.fit_one_cycle(10, max_lr=lr,
 callbacks=[
 SaveModelCallbackVerbose(learn,
 monitor='error_rate',
 mode='min',
 name='20181206-rn50class-st
]
)

learn.unfreeze()

In [70]:

In [71]:

LR Finder is complete, type {learner_name}.recorder.plot() to see the grap
h.

Total time: 1:40:01

epoch train_loss valid_loss error_rate

1 0.247885 0.210452 0.069249

2 0.283159 0.205725 0.072244

3 0.289417 0.281262 0.092083

4 0.278240 0.191837 0.068127

5 0.283583 0.184188 0.064945

6 0.276350 0.191253 0.066255

7 0.254773 0.178890 0.060266

8 0.233812 0.171120 0.061389

9 0.213923 0.171491 0.060640

10 0.221029 0.169698 0.059891

saved model at epoch 1 with error_rate value: 0.06924948841333389
saved model at epoch 4 with error_rate value: 0.06812652200460434
saved model at epoch 5 with error_rate value: 0.064944788813591
saved model at epoch 7 with error_rate value: 0.06026576831936836
saved model at epoch 10 with error_rate value: 0.05989144742488861

learn.lr_find()
learn.recorder.plot()

learn.fit_one_cycle(10, max_lr=slice(3e-5, lr/5),
 callbacks=[
 SaveModelCallbackVerbose(learn,
 monitor='error_rate',
 mode='min',
 name='20181206-rn50class-st
]
)

In [72]:

Look at Results

In [74]:

In [76]:

In [77]:

Out[77]: [('Incomplete', 'Complete', 174),
('Complete', 'Incomplete', 45),
('Foundation', 'Complete', 33),
('Incomplete', 'Foundation', 27),
('Foundation', 'Incomplete', 23),
('Complete', 'Foundation', 12),
('Foundation', 'Empty', 3)]

learn.recorder.plot_losses()

interp = ClassificationInterpretation.from_learner(learn)

interp.plot_confusion_matrix(figsize=(5,5), dpi=60)

interp.most_confused(min_val=2)

In [79]:

t-SNE Visualization (thanks to & adapted from
@KarlH)
https://forums.fast.ai/t/share-your-work-here/27676/53 (https://forums.fast.ai/t/share-your-
work-here/27676/53)

https://github.com/kheyer/ML-DL-Projects/blob/master/Pets%20TSNE/pets_tsne.ipynb
(https://github.com/kheyer/ML-DL-Projects/blob/master/Pets%20TSNE/pets_tsne.ipynb)

In [80]:

In [81]:

In [82]:

interp.plot_top_losses(16, figsize=(15,11))

from sklearn.manifold import TSNE
import seaborn as sns
from sklearn import manifold, datasets
from sklearn.metrics.pairwise import pairwise_distances
from sklearn.metrics import confusion_matrix
from scipy.spatial.distance import squareform
from matplotlib.offsetbox import OffsetImage, AnnotationBbox
from matplotlib.ticker import NullFormatter
import PIL

preds = interp.probs
y = interp.y_true
losses = interp.losses

probs_trans = manifold.TSNE(n_components=2, perplexity=15).fit_transform(pre

In [83]:

In [84]:

Out[83]: x y labels

0 56.746861 -47.716217 3.0

1 -48.950485 -3.635262 0.0

2 -5.009671 3.444134 0.0

3 3.583071 -5.047320 0.0

4 -21.317375 -26.444191 0.0

prob_df = pd.DataFrame(np.concatenate((probs_trans, y[:,None]), axis=1), col
prob_df.head()

g = sns.lmplot('x', 'y', data=prob_df, hue='labels', fit_reg=False, legend=F

In [85]:

In [86]:

Out[85]: x y labels fname loss

0 56.746861 -47.716217 3.0 /storage/classify-data/images/grid028_00000_Em... -0.000000

1 -48.950485 -3.635262 0.0 /storage/classify-data/images/grid028_00001_Co... 0.003945

2 -5.009671 3.444134 0.0 /storage/classify-data/images/grid028_00002_Co... 0.046917

3 3.583071 -5.047320 0.0 /storage/classify-data/images/grid028_00003_Co... 0.048156

4 -21.317375 -26.444191 0.0 /storage/classify-data/images/grid028_00004_Co... 0.080974

prob_df['fname'] = data.valid_ds.items
prob_df['loss'] = losses
prob_df.head()

modified to optionally filter by idxs

def visualize_scatter_with_images(scaled_data, df, idxs, figsize=(64,64), im
 scaled_data = scaled_data[idxs]
 df = df.iloc[idxs]

 fig, ax = plt.subplots(figsize=figsize)
 artists = []
 xx = (scaled_data[:,0])
 yy = (scaled_data[:,1])

 for (i,x,y) in zip(idxs,xx,yy):
 im = PIL.Image.open(df['fname'][i])
 im.thumbnail((64,64))
 img = OffsetImage(im, zoom=image_zoom, cmap='gray')
 ab = AnnotationBbox(img, (x, y), xycoords='data', frameon=False)
 artists.append(ax.add_artist(ab))
 ax.update_datalim(np.column_stack([xx,yy]))
 ax.autoscale()

fig.savefig(f'TSNE_{suffix}.jpg', bbox_inches = 'tight')
 return fig, ax

In [87]:

In [88]:

fig, ax = visualize_scatter_with_images(probs_trans, prob_df, range(len(prob
plt.show()

top_losses = prob_df['loss'].sort_values(ascending=False)[:20].index.values

In [89]:

Out[89]: x y labels fname loss

1676 9.071122 -30.559656 2.0 /storage/classify-data/images/grid029_00218_Fo... 9.658810

2390 -23.901659 -84.158226 2.0 /storage/classify-data/images/grid029_00880_Fo... 7.988194

2236 -23.951727 -52.477448 0.0 /storage/classify-data/images/grid029_00735_Co... 7.502900

3955 -24.108377 -86.259254 1.0 /storage/classify-data/images/grid042_00397_In... 6.312711

2984 0.596981 -33.512062 0.0 /storage/classify-data/images/grid029_01434_Co... 6.264024

1449 -51.541935 3.057128 1.0 /storage/classify-data/images/grid029_00008_In... 5.652417

2847 -9.209568 -26.133133 2.0 /storage/classify-data/images/grid029_01307_Fo... 5.629231

1460 -65.345856 4.596048 1.0 /storage/classify-data/images/grid029_00018_In... 5.316871

1477 -61.389629 17.511150 1.0 /storage/classify-data/images/grid029_00033_In... 5.279524

3560 -12.731878 -26.593086 2.0 /storage/classify-data/images/grid042_00037_Fo... 5.165102

2052 7.851956 -52.302036 1.0 /storage/classify-data/images/grid029_00566_In... 4.968777

2059 11.943326 -50.991638 1.0 /storage/classify-data/images/grid029_00572_In... 4.938722

1486 -1.297820 -50.215778 1.0 /storage/classify-data/images/grid029_00041_In... 4.802966

2546 -71.905006 29.902550 1.0 /storage/classify-data/images/grid029_01027_In... 4.712808

2484 -71.327370 29.958330 1.0 /storage/classify-data/images/grid029_00969_In... 4.699991

1494 -2.534295 -50.299793 1.0 /storage/classify-data/images/grid029_00049_In... 4.557220

2032 29.490635 71.660698 2.0 /storage/classify-data/images/grid029_00547_Fo... 4.507183

1917 -64.892960 39.141045 1.0 /storage/classify-data/images/grid029_00440_In... 4.495970

4086 -65.361137 -14.892749 2.0 /storage/classify-data/images/grid042_00516_Fo... 4.469344

1542 -46.737644 -61.083656 0.0 /storage/classify-data/images/grid029_00094_Co... 4.340938

prob_df.iloc[top_losses] In [90]:

Grad-CAM based on lesson6-pets-more

In [91]:

show only images with top 20 losses
fig, ax = visualize_scatter_with_images(probs_trans, prob_df, top_losses, fi
plt.show()

m = learn.model.eval()

In [92]:

In [93]:

In [94]:

In [95]:

In [96]:

In [115]:

Out[92]: Category Incomplete

Out[94]: (None, torch.Size([1, 3, 512, 512]), torch.Size([1]))

Out[95]: (Category Incomplete, tensor([0], device='cuda:0'))

idx = 12
x,y = data.valid_ds[idx]
x.show()
data.valid_ds.y[idx]

xb, yb = data.one_item(x) # make batch with one item
xb_im = Image(data.denorm(xb)[0]) # denorm item into viewable image
xb = xb.cuda() # load on gpu

xb_im.show(), xb.shape, yb.shape

y, yb

from fastai.callbacks.hooks import *
import pdb

def hooked_backward(cat=y):
pdb.set_trace()
 with hook_output(m[0]) as hook_a: # set activation hook
 with hook_output(m[0], grad=True) as hook_g: # set gradient hook
 preds = m(xb) # forward pass
 preds[0,int(cat)].backward() # backward pass
 return hook_a, hook_g

In [116]:

In [117]:

In [118]:

In [119]:

In [120]:

In [121]:

In [122]:

In [123]:

Out[118]: torch.Size([2048, 16, 16])

Out[119]: <matplotlib.image.AxesImage at 0x7f5229f17630>

Out[120]: torch.Size([16, 16])

Out[121]: <matplotlib.image.AxesImage at 0x7f5229e7f080>

Out[123]: torch.Size([2048, 16, 16])

hook_a, hook_g = hooked_backward()

acts = hook_a.stored[0].cpu()

acts.shape

plt.imshow(acts[0])

avg_acts = acts.mean(0) # get the "pixel"-wise mean of activations (avg acro
avg_acts.shape

plt.imshow(avg_acts)

grad = hook_g.stored[0][0].cpu()

grad.shape

In [124]:

In [125]:

In [126]:

In [127]:

In [129]:

In [130]:

Out[124]: (torch.Size([2048, 16, 16]), torch.Size([2048]))

Out[125]: torch.Size([2048, 1, 1])

Out[126]: torch.Size([16, 16])

grad_chan = grad.mean(1).mean(1) # get the avg of grads for each channel
grad.shape, grad_chan.shape

grad_chan[...,None,None].shape # make 2 more axes to be same shape as acts

(acts*grad_chan[...,None,None]).mean(0).shape

mult = (acts*grad_chan[...,None,None]).mean(0)

def show_heatmap(hm,interpol='bilinear',cmap='magma'):
 _, ax = plt.subplots()
 xb_im.show(ax)
 ax.imshow(hm, alpha=0.6, extent=(0,512,512,0), interpolation=interpol,cm

show_heatmap(mult)

In [134]:

In [135]:

fig, axes = plt.subplots(5,5, figsize=(20,20))
for j, ax in enumerate(axes.flat):
 ax.get_xaxis().set_visible(False)
 ax.get_yaxis().set_visible(False)
 xb_im.show(ax=ax)
 ax.set_title('Channel '+str(j)+ '\n'+'grad_chan value: '+str(grad_chan.n
 ax.imshow(acts[j], alpha=0.6, extent=(0,512,512,0), interpolation='bilin
ax.imshow([importance_idxs[j]]), alpha=0.6)
plt.show()

thanks @henripal, from https://github.com/henripal/maps/blob/master/nbs/bi
import scipy.ndimage

def upsample(heatmap, zoom=32):
 upsampled = scipy.ndimage.zoom(heatmap, zoom)
 upsampled = (upsampled - np.min(upsampled))/((np.max(upsampled) - np.min
 return upsampled

In [136]:

In [137]:

In [138]:

In [143]:

Out[136]: grad_chan

0 4.844370e-05

1 9.563417e-06

2 -7.725328e-07

3 3.047246e-05

4 8.112050e-06

Out[137]: array([101, 220, 1270, 631, ..., 74, 844, 1954, 660])

Out[138]: grad_chan

101 0.005839

220 0.003543

1270 0.002052

631 0.001911

1813 0.001636

Out[143]: <matplotlib.image.AxesImage at 0x7f52295b50b8>

grad_df = pd.DataFrame(grad_chan.numpy(), columns=['grad_chan'])
grad_df.head()

importance_idxs = grad_df.sort_values(by='grad_chan',ascending=False).index.
importance_idxs

grad_df.iloc[importance_idxs].head()

heatmap with most important 100 activations (ranked by grad_chan)
fm_up = [upsample(fm) for fm in acts[importance_idxs[:100]]]
xb_im.show(figsize=(5,5))
plt.imshow(np.mean(fm_up, axis=0),alpha=0.6, cmap='magma')

In [144]:

Test time

In [145]:

In [146]:

In [147]:

Out[144]: <matplotlib.image.AxesImage at 0x7f5229579940>

Out[147]: ['Complete', 'Incomplete', 'Foundation', 'Empty']

heatmap with least important 100 activations (ranked by grad_chan)
fm_up = [upsample(fm) for fm in acts[importance_idxs[-100:]]]
xb_im.show(figsize=(5,5))
plt.imshow(np.mean(fm_up, axis=0),alpha=0.6, cmap='magma')

data.export()

empty_data = ImageDataBunch.load_empty(path, tfms=tfms, size=512).normalize(
learn = create_cnn(empty_data, models.resnet50)

empty_data.classes

In [148]:

In [149]:

In [161]:

In [162]:

Out[148]: Sequential(
 (0): Sequential(
 (0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3,
3), bias=False)
 (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_run

ning_stats=True)
 (2): ReLU(inplace)
 (3): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_

mode=False)
 (4): Sequential(
 (0): Bottleneck(
 (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=

False)
 (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, tra

ck_running_stats=True)
 (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), paddi

ng=(1, 1), bias=False)
 (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, tra

ck_running_stats=True)
(3) C 2d(64 256 k l i (1 1) t id (1 1) bi

13552

learn.load('20181206-rn50class-stage2-best')
learn.model.eval()

grid_num = '119'
test_path = Path(f'/storage/znz-classify-001/demo_test/test_{grid_num}')
test_fns = [o for o in sorted(test_path.iterdir()) if '.jpg' in o.name]
print(len(test_fns))

img = open_image(test_fns[100])
img.show()
plt.show()

img = img.apply_tfms(tfms[1],resize_method=ResizeMethod.SQUISH, size=512, bs
img.show()

In [165]:

In [152]:

In [154]:

In [155]:

In [156]:

Out[165]: (Category Complete,
tensor(0),
tensor([9.6798e-01, 3.0493e-02, 1.4308e-03, 9.5591e-05]))

100%|██████████| 100/100 [00:04<00:00, 20.55it/s]

Out[156]: array([[0.99, 0.01, 0. , 0.],
 [0.99, 0.01, 0. , 0.],
 [0.51, 0.49, 0. , 0.],
 [0.17, 0.04, 0.79, 0.],
 ...,
 [1. , 0. , 0. , 0.],
 [0.97, 0.01, 0. , 0.02],
 [0.95, 0.04, 0. , 0.],
 [0.33, 0.66, 0.01, 0.]], dtype=float32)

learn.predict(img)

from tqdm import tqdm

preds = []
pred_classes = []
for fn in tqdm(test_fns[:100]):
 try:
 img = open_image(fn)
 img = img.apply_tfms(tfms[1],resize_method=ResizeMethod.SQUISH, size
 pred_class,pred_idx,outputs = learn.predict(img)
 preds.append(list(to_np(outputs)))
 pred_classes.append(pred_class)
 except Exception as exc:
 print(f'{exc}')
 preds.append([-1,-1,-1,-1])
 pred_classes.append('error')

img.show()

np.round(preds,2)

In [157]:

In [158]:

In [159]:

Out[157]: array([[0.99, 0.01, 0. , 0.],
 [0.99, 0.01, 0. , 0.],
 [0.51, 0.49, 0. , 0.],
 [0.17, 0.04, 0.79, 0.],
 ...,
 [1. , 0. , 0. , 0.],
 [0.97, 0.01, 0. , 0.02],
 [0.95, 0.04, 0. , 0.],
 [0.33, 0.66, 0.01, 0.]], dtype=float32)

Out[159]: Complete Incomplete Foundation Empty fname predicted_class

0 0.985044 0.013088 0.001585 0.000283 119_00000_test.jpg Complete

1 0.986397 0.013174 0.000414 0.000015 119_00001_test.jpg Complete

2 0.506189 0.490988 0.002788 0.000035 119_00002_test.jpg Complete

3 0.166216 0.043905 0.789644 0.000234 119_00003_test.jpg Foundation

4 0.953893 0.045666 0.000435 0.000005 119_00004_test.jpg Complete

np.round(preds,2)

df = pd.DataFrame(data=preds, columns=data.classes)
df['fname'] = [o.name for o in test_fns[:len(preds)]]
df['predicted_class'] = pred_classes

df.head()

In [160]:

Complete 0.9850437641143799

Complete 0.9863974452018738

Complete 0.5061893463134766

Foundation 0.789644181728363

Complete 0.9538934826850891

for i in range(10):
 img = open_image(test_path/df.iloc[i]['fname'])
 print(df.iloc[i]['predicted_class'], df.iloc[i][df.iloc[i]['predicted_cl
 img.show()
 plt.show()

Foundation 0.9689040780067444

Complete 0.9510454535484314

Incomplete 0.5464768409729004

Complete 0.586933970451355

In [220]:

Complete 0.9919455647468567

df.to_csv('preds.csv',index=False)

