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Conn Lee
How to use drone image & GIS to recreate your city in minecraft?
Drone tech & machine learning brings education & participatory urban planning to whole new level!
#Dronecraft #Drone4Edu



Title: Leveraging Drone Technology for Integrated Environmental Mapping and Minecraft
Visualization

Context:
In an era dominated by technological advancements, the intersection of drones, GIS
(Geographic Information System), and video games presents a groundbreaking opportunity
for immersive and interactive educational experiences. This project seeks to utilize drone
technology for aerial data collection and subsequent integration with GIS and Minecraft for
educational, urban planning, public engagement, academic research, and government public
consultation purposes.

Target:
The primary target audience includes urban planners, researchers, municipal governments,
planning authorities, students, children, and elderly.

Public actors are able to instrumentalize the tool to facilitate the engagement of the laymen
in participatory planning exercises.

Community organizations can initiate co-creation workshops and formulate land-use
planning proposals with the input of community members through gaming.

Children and the elderly with limited technical knowledge and/or digital literacy can be
empowered by the tool in contributing their ideas to land use planning.

This innovative solution aims to provide a comprehensive and accessible platform for
understanding and interacting with geographical data by way of gamification, allowing for a
more equitable and creative public engagement pathway to land-use planning.

Solution:
The process involves using drones to collect high-resolution footage and images of the
urban built environment, followed by data processing in ArcGIS to categorize and label
various geographical and urban landscape features. The creation of a fishnet grid aids in
organizing the data spatially. This data is then imported into Minecraft, offering a visually
immersive experience where users, particularly laymen such as children, the elderly, and
local inhabitants, can explore and interact with a digital replica of the real-world environment.
Urban planners who wish to collect ideas and inputs from the general public can capitalize
the gaming experience to gather feedback and counter-proposals, supporting deliberative
processes. Urban planning workshops and consultation sessions can be held at the
community level with the aid of the tool in order to incentivize public participation of those
who often experience exclusion from the institutional decision-making mechanism.



Educators can design pedagogical exercises with the tool to encourage peer-to-peer
learning for subjects like geography, urban design, and public space.

Impact:
The quality of public engagement in land-use planning processes is alleviated through
interactive virtual environments, which is more digestible than blueprints and technical
documents.

Urban planners can utilize the platform to harness the potential and creativity of the users
and to create inclusive urban designs that cater the needs of different community members.

Disadvantaged groups, such as people with disabilities, women and girls, and racialized
persons, can overcome accessibility barriers by interacting in a virtual space which
reanimates the real-world environment, ensuring their right to participate in redesigning
urban space.

Municipal governments, planning authorities, and public consultancy professionals can
gain a powerful tool for transparent and inclusive decision-making, while increasing levels of
participation, efficiency and accountability in urban planning.

In the education sector, students can gain hands-on experience with drone technologies
and geodata processing methods, enhancing their STEM and problem-solving skills.
Academic researchers benefit from a richer dataset of community perception and feedback
related to land-use planning.

Innovativeness:
This project is innovative in its seamless integration of drone technology, GIS, and Minecraft.
The combination of real-world data capture, spatial analysis, and immersive visualization can
be used to communicate technical information to the public, provide access to information
that was previously only provided to experts and governments, and crowdsource information
and feedback directly from participants. The data collected from drone images reinforces
tangibility and authenticity of the simulation. It further enables a bottom-up and
community-based approach in land-use planning by lowering the knowledge threshold to
land-use planning and reducing the accessibility barriers to use urban space. The tool can fill
in the epistemological gap between planning practitioners and laymen, such as children and
the elderly, through gamification.

Transferability:
The methodology employed is adaptable to various contexts and environments. It can be
applied globally, regardless of climatic and cultural constraints, providing a versatile tool for
education, planning, and research in different geographical and cultural settings. The use of



drone technology and data processing software, when adequately applied, has the potential
of minimizing the cost of recreating the built environment in the virtual space.

Sustainability:
The project's sustainability lies in its ability to evolve with technological advancements. As
GIS and geodata processing technologies progress, the tool can be updated and expanded.
Educational institutions, urban planning departments, and local governments can integrate
this solution as a part of public consultation and participatory mechanism into their long-term
land-use strategies for continuous benefit.

Teamwork:
The success of this project hinges on collaboration between drone operators, GIS
specialists, software developers, educators, and urban planners. A multidisciplinary team
ensures the seamless execution of each phase, from data collection to visualization.

In conclusion, this innovative integration of drone technology, GIS, and Minecraft holds
immense potential for transformative educational experiences, urban planning, research,
and public engagement. The project's adaptability, sustainability, and collaborative nature
underscore its potential as a pioneering solution for diverse applications and audiences.



Source: UN Habitat, USING MINECRAFT FOR YOUTH PARTICIPATION IN URBAN
DESIGN AND GOVERNANCE, p.3
https://unhabitat.org/sites/default/files/download-manager-files/Using%20Minecraft%20for%2
0Youth%20Participation%20in%20Urban%20Design%20and%20Governance.pdf

https://unhabitat.org/sites/default/files/download-manager-files/Using%20Minecraft%20for%20Youth%20Participation%20in%20Urban%20Design%20and%20Governance.pdf
https://unhabitat.org/sites/default/files/download-manager-files/Using%20Minecraft%20for%20Youth%20Participation%20in%20Urban%20Design%20and%20Governance.pdf


Innovative Mapping: Aerial Intelligence Meets Virtual Realms for Education and Planning

Conn L.H. Lee

Samuel T.C.Kong



Conte t

In an era dominated  tec nological advancements  t e intersection of 

drones  IS eograp ic Information S stem  and video games 

presents a ground rea ing opportunit  for immersive and interactive 

educational e periences. 

T is pro ect see s to utili e drone tec nolog  for aerial data collection 

and su se uent integration it  IS and Minecraft for educational  

ur an planning  pu lic engagement  academic researc  and 

government pu lic consultation purposes.

 armoni ing cutting edge tec nologies  t is initiative pioneers a ne  

frontier in education  ur an planning  and pu lic interaction. T e 

s nerg  of drones  IS  and Minecraft not onl  provides a novel 

educational platform ut also empo ers diverse sta e olders in 

s aping and understanding t eir environment  fostering a more 

engaged and informed societ .



Target

T e primar  target audience includes ur an planners  researc ers  
municipal governments  planning aut orities  students  c ildren  and 
elderl . 

Public actors are a le to instrumentali e t e tool to facilitate t e 
engagement of t e la men in participator  planning e ercises. 

Community organizations can initiate co creation or s ops and 
formulate land use planning proposals it  t e input of communit  
mem ers t roug  gaming. 

Children and t e elderly it  limited tec nical no ledge and or digital 
literac  can e empo ered  t e tool in contri uting t eir ideas to land 
use planning. 

T is innovative solution aims to provide a compre ensive and accessi le 
platform for understanding and interacting it  geograp ical data  

a  of gamification  allo ing for a more e uita le and creative pu lic 
engagement pat a  to land use planning.



Solution
T e process involves using drones to collect ig resolution footage and 

images of t e ur an uilt environment  follo ed  data processing in 

Arc IS to categori e and la el various geograp ical and ur an 

landscape features. T e creation of a fis net grid aids in organi ing t e 

data spatiall . T is data is t en imported into Minecraft  offering a 

visuall  immersive e perience ere users  particularl  la men suc  as 

c ildren  t e elderl  and local in a itants  can e plore and interact it  

a digital replica of t e real orld environment. 

rban lanners o is  to collect ideas and inputs from t e general 

pu lic can capitali e t e gaming e perience to gat er feed ac  and 

counter proposals  supporting deli erative processes. r an planning 

or s ops and consultation sessions can e eld at t e communit  

level it  t e aid of t e tool in order to incentivi e pu lic participation 

of t ose o often e perience e clusion from t e institutional 

decision ma ing mec anism. ducators can design pedagogical 

e ercises it  t e tool to encourage peer to peer learning for su ects 

li e geograp  ur an design  and pu lic space. 



Impact
T e ualit  of pu lic engagement in land use planning processes is alleviated 

t roug  interactive virtual environments  ic  is more digesti le t an 

lueprints and tec nical documents. 

rban lanners can utili e t e platform to arness t e potential and creativit  

of t e users and to create inclusive ur an designs t at cater t e needs of 

different communit  mem ers. 

isad antaged grou s  suc  as people it  disa ilities  omen and girls  and 

raciali ed persons  can overcome accessi ilit  arriers  interacting in a virtual 

space ic  reanimates t e real orld environment  ensuring t eir rig t to 

participate in redesigning ur an space.  

unici al go ernments  planning aut orities  and  pu lic consultanc  

professionals can gain a po erful tool for transparent and inclusive 

decision ma ing  ile increasing levels of participation  efficienc  and 

accounta ilit  in ur an planning.

In t e education sector  students can gain ands on e perience it  drone 

tec nologies and geodata processing met ods  en ancing t eir STEM and 

pro lem solving s ills. cademic researchers enefit from a ric er dataset of 

communit  perception and feed ac  related to land use planning. 



Innovativeness

T is pro ect is innovative in its seamless integration of drone 

tec nolog  IS  and Minecraft. T e com ination of real orld data 

capture  spatial anal sis  and immersive visuali ation can e used to 

communicate tec nical information to t e pu lic  provide access to 

information t at as previousl  onl  provided to e perts and 

governments  and cro dsource information and feed ac  directl  from 

participants. 

T e data collected from drone images reinforces tangi ilit  and 

aut enticit  of t e simulation. It furt er ena les a ottom up and 

communit ased approac  in land use planning  lo ering t e 

no ledge t res old to land use planning and reducing t e accessi ilit  

arriers to use ur an space. T e tool can fill in t e epistemological gap 

et een planning practitioners and la men  suc  as c ildren and t e 

elderl  t roug  gamification. 



Transfera ilit

T e met odolog  emplo ed is adapta le to various conte ts and 

environments. It can e applied glo all  regardless of climatic and 

cultural constraints  providing a versatile tool for education  planning  

and researc  in different geograp ical and cultural settings. 

T e use of drone tec nolog  and data processing soft are  en 

ade uatel  applied  as t e potential of minimi ing t e cost of 

recreating t e uilt environment in t e virtual space.

T is adapta le met odolog  transcends geograp ical and cultural 

oundaries  offering a universall  applica le solution.  efficientl  

leveraging drone tec nolog  and data processing soft are  t e initiative 

not onl  en ances glo al accessi ilit  ut also demonstrates economic 

efficienc  minimi ing t e financial investments re uired for virtual 

environment replication.



Sustaina ilit

T e pro ect s sustaina ilit  lies in its a ilit  to evolve it  
tec nological advancements. As IS and geodata processing 
tec nologies progress  t e tool can e updated and e panded.

Educational institutions  ur an planning departments  and local 
governments can integrate t is solution as a part of pu lic 
consultation and participator  mec anism into t eir long term 
land use strategies for continuous enefit.

urt ermore  t e diverse e pertise it in t e colla orative team 
guarantees a nuanced understanding of eac  pro ect facet  
promoting efficienc  and innovation. 

it  adapta ilit  oven into its core  t e pro ect not onl  meets 
current needs ut stands resilient in t e face of evolving 
tec nological landscapes  ensuring a lasting impact on education  
ur an development  and societal engagement.



Team or

T e success of t is pro ect inges on colla oration et een drone 
operators  IS specialists  soft are developers  educators  and ur an 
planners. A multidisciplinar  team ensures t e seamless e ecution of eac  
p ase  from data collection to visuali ation.

In conclusion  t is innovative integration of drone tec nolog  IS  and 
Minecraft olds immense potential for transformative educational 
e periences  ur an planning  researc  and pu lic engagement. T e 
pro ect s adapta ilit  sustaina ilit  and colla orative nature underscore 
its potential as a pioneering solution for diverse applications and 
audiences.

T is s m iotic colla oration not onl  en ances pro ect efficienc  ut also 
reflects a for ard t in ing approac  to comple  pro lem solving. it  
adapta ilit  ingrained  t e initiative is poised to redefine educational 
paradigms  ur an planning met odologies  and researc  landscapes ile 
fostering inclusive pu lic engagement. Its impact resonates across diverse 
sectors  promising a lasting and influential legac .



ridging t e gap…

 Ha itat as een e perimenting it  Minecraft for inclusive 

participation ur an design since .

T ere is a great potential for gamification…

ur tool tries to connect drone images it  minecraft  

developing an automated mac ine learning algorit m ic  

processes and categori es t e data collected  drones.



T an  ou



Classify Building Conditions in Zanzibar from
Drone Imagery

In [1]:

In [2]:

In [4]:

```text
=== Software === 
python version  : 3.6.6
fastai version  : 1.0.33
torch version   : 1.0.0.dev20181114
nvidia driver   : 410.48
torch cuda ver  : 9.2.148
torch cuda is   : available
torch cudnn ver : 7104
torch cudnn is  : enabled

=== Hardware === 
nvidia gpus     : 1
torch available : 1
 - gpu0        : 16278MB | Quadro P5000

=== Environment === 
platform        : Linux-4.4.0-130-generic-x86_64-with-debian-stretch-sid
distro          : #156-Ubuntu SMP Thu Jun 14 08:53:28 UTC 2018
conda env       : Unknown
python          : /opt/conda/envs/fastai/bin/python
sys.path        : 
/opt/conda/envs/fastai/lib/python36.zip
/opt/conda/envs/fastai/lib/python3.6
/opt/conda/envs/fastai/lib/python3.6/lib-dynload
/opt/conda/envs/fastai/lib/python3.6/site-packages
/opt/conda/envs/fastai/lib/python3.6/site-packages/IPython/extensions
/root/.ipython
```

Please make sure to include opening/closing ``` when you paste into forum
s/github to make the reports appear formatted as code sections.

Optional package(s) to enhance the diagnostics can be installed with:
pip install distro
Once installed, re-run this utility to get the additional information

%reload_ext autoreload
%autoreload 2
%matplotlib inline

from fastai import *
from fastai.vision import *

from fastai.utils import *
show_install()

Prepare Data

In [5]:

In [6]:

In [7]:

In [8]:

In [9]:

In [10]:

20176

Out[7]: [PosixPath('/storage/classify-data/images/grid043_04750_Empty.jpg'),
PosixPath('/storage/classify-data/images/grid058_05520_Empty.jpg'),
PosixPath('/storage/classify-data/images/grid029_00149_Complete.jpg'),
PosixPath('/storage/classify-data/images/grid042_02150_Empty.jpg'),
PosixPath('/storage/classify-data/images/grid035_00463_Foundation.jpg')]

20176

Out[8]: ['grid001_00001_Complete.jpg',
'grid001_00002_Complete.jpg',
'grid001_00003_Complete.jpg',
'grid001_00004_Complete.jpg',
'grid001_00005_Complete.jpg']

Out[9]: fnames

0 grid001_00001_Complete.jpg

1 grid001_00002_Complete.jpg

2 grid001_00003_Complete.jpg

3 grid001_00004_Complete.jpg

4 grid001_00005_Complete.jpg

path = Path('/storage/classify-data')

path_img = path/'images'

fnames = get_image_files(path_img)
print(len(fnames))
fnames[:5]

# filter out empty jpg files by size>0 and sort
fnames = [fname.name for fname in sorted(fnames) if os.path.getsize(fname)>0
print(len(fnames))
fnames[:5]

df = pd.DataFrame(fnames,columns=['fnames'])
df.head()

# hand-picked val grids
holdout_grids = ['grid028_','grid029_','grid042_','grid058_']
valid_idx = [i for i,o in df.iterrows() if any(c in str(o.fnames) for c in h



In [11]:

In [12]:

In [13]:

In [55]:

In [56]:

In [57]:

Out[11]: fnames

7432 grid028_00000_Empty.jpg

7433 grid028_00001_Complete.jpg

7434 grid028_00002_Complete.jpg

7435 grid028_00003_Complete.jpg

7436 grid028_00004_Complete.jpg

Out[56]: ImageDataBunch;

Train: LabelList
y: CategoryList (14833 items)
[Category Complete, Category Complete, Category Complete, Category Complet
e, Category Complete]...
Path: /storage/classify-data
x: ImageItemList (14833 items)
[Image (3, 428, 920), Image (3, 184, 187), Image (3, 197, 196), Image (3, 
157, 157), Image (3, 185, 188)]...
Path: /storage/classify-data;

Valid: LabelList
y: CategoryList (5343 items)
[Category Empty, Category Complete, Category Complete, Category Complete, 
Category Complete]...
Path: /storage/classify-data
x: ImageItemList (5343 items)
[Image (3, 243, 179), Image (3, 298, 234), Image (3, 186, 221), Image (3, 
300, 181), Image (3, 176, 184)]...
Path: /storage/classify-data;

Test: None

Out[57]: ['Complete', 'Incomplete', 'Foundation', 'Empty']

df.iloc[valid_idx].head()

# pulled out of fastai/data.py
pat = r'([^_]+).jpg$'
pat = re.compile(pat)
def get_label(fn): return pat.search(str(fn)).group(1)

src = (ImageItemList.from_df(df, folder='images', path=path)
        .split_by_idx(valid_idx)
        .label_from_func(get_label, classes=['Complete', 'Incomplete', 'Foun

bs = 32
sz = 512
tfms = get_transforms(flip_vert=True, max_rotate=0.2, max_warp=0., max_zoom=
data = (src.transform(tfms, size=512, resize_method=ResizeMethod.SQUISH, pad
        .databunch(bs=bs)
        .normalize(imagenet_stats))

data

data.train_ds.classes

In [58]:

Empty /storage/classify-data/images/grid028_00000_Empty.jpg

Complete /storage/classify-data/images/grid028_00001_Complete.jpg

Complete /storage/classify-data/images/grid028_00002_Complete.jpg

Complete /storage/classify-data/images/grid028_00003_Complete.jpg

for i in range(5):
    print(data.valid_ds.classes[data.valid_ds.y[i].data], data.valid_ds.item
    data.valid_ds.x[i].show()
    plt.show()



In [59]:

Complete /storage/classify-data/images/grid028_00004_Complete.jpg

data.show_batch(rows=4, figsize=(12,12))

In [60]:

In [61]:

In [63]:

Out[61]: <fastai.layers.FlattenedLoss at 0x7f5274a9d400>

data.show_batch(rows=4, figsize=(12,12), ds_type=DatasetType.Valid)

data.loss_func

learn = create_cnn(data, models.resnet50, metrics=error_rate)



In [64]:

In [65]:

In [67]:

LR Finder is complete, type {learner_name}.recorder.plot() to see the grap
h.

learn.lr_find()
learn.recorder.plot()

lr = 1e-2

from fastai.callbacks import *
 
# small change to SaveModelCallback() to add printouts
@dataclass
class SaveModelCallbackVerbose(TrackerCallback):
    "A `TrackerCallback` that saves the model when monitored quantity is bes
    every:str='improvement'
    name:str='bestmodel'
    def __post_init__(self):
        if self.every not in ['improvement', 'epoch']:
            warn(f'SaveModel every {self.every} is invalid, falling back to 
            self.every = 'improvement'
        super().__post_init__()
 
    def on_epoch_end(self, epoch, **kwargs:Any)->None:
        if self.every=="epoch": self.learn.save(f'{self.name}_{epoch}')
        else: #every="improvement"
            current = self.get_monitor_value()
            if current is not None and self.operator(current, self.best):
                self.best = current
                self.learn.save(f'{self.name}')
                print(f'saved model at epoch {epoch} with {self.monitor} val
 
    def on_train_end(self, **kwargs):
        if self.every=="improvement": self.learn.load(f'{self.name}')

In [68]:

In [69]:

Total time: 1:17:00

epoch train_loss valid_loss error_rate

1 0.373114 0.239636 0.088153

2 0.364517 0.273235 0.092645

3 0.339809 0.367768 0.138686

4 0.336729 0.265249 0.097885

5 0.302687 0.227810 0.077859

6 0.299651 0.206304 0.073367

7 0.260983 0.184381 0.065693

8 0.259397 0.478516 0.064009

9 0.219406 0.172479 0.061576

10 0.227847 0.245279 0.061202

saved model at epoch 1 with error_rate value: 0.08815272152423859
saved model at epoch 5 with error_rate value: 0.07785888016223907
saved model at epoch 6 with error_rate value: 0.07336702197790146
saved model at epoch 7 with error_rate value: 0.0656934306025505
saved model at epoch 8 with error_rate value: 0.06400898098945618
saved model at epoch 9 with error_rate value: 0.06157589331269264
saved model at epoch 10 with error_rate value: 0.06120157241821289

learn.fit_one_cycle(10, max_lr=lr, 
                    callbacks=[
                        SaveModelCallbackVerbose(learn,
                                                 monitor='error_rate',
                                                 mode='min',
                                                 name='20181206-rn50class-st
                    ]
                   )

learn.unfreeze()



In [70]:

In [71]:

LR Finder is complete, type {learner_name}.recorder.plot() to see the grap
h.

Total time: 1:40:01

epoch train_loss valid_loss error_rate

1 0.247885 0.210452 0.069249

2 0.283159 0.205725 0.072244

3 0.289417 0.281262 0.092083

4 0.278240 0.191837 0.068127

5 0.283583 0.184188 0.064945

6 0.276350 0.191253 0.066255

7 0.254773 0.178890 0.060266

8 0.233812 0.171120 0.061389

9 0.213923 0.171491 0.060640

10 0.221029 0.169698 0.059891

saved model at epoch 1 with error_rate value: 0.06924948841333389
saved model at epoch 4 with error_rate value: 0.06812652200460434
saved model at epoch 5 with error_rate value: 0.064944788813591
saved model at epoch 7 with error_rate value: 0.06026576831936836
saved model at epoch 10 with error_rate value: 0.05989144742488861

learn.lr_find()
learn.recorder.plot()

learn.fit_one_cycle(10, max_lr=slice(3e-5, lr/5), 
                    callbacks=[
                        SaveModelCallbackVerbose(learn,
                                                 monitor='error_rate',
                                                 mode='min',
                                                 name='20181206-rn50class-st
                    ]
                   )

In [72]:

Look at Results

In [74]:

In [76]:

In [77]:

Out[77]: [('Incomplete', 'Complete', 174),
('Complete', 'Incomplete', 45),
('Foundation', 'Complete', 33),
('Incomplete', 'Foundation', 27),
('Foundation', 'Incomplete', 23),
('Complete', 'Foundation', 12),
('Foundation', 'Empty', 3)]

learn.recorder.plot_losses()

interp = ClassificationInterpretation.from_learner(learn)

interp.plot_confusion_matrix(figsize=(5,5), dpi=60)

interp.most_confused(min_val=2)



In [79]:

t-SNE Visualization (thanks to & adapted from
@KarlH)
https://forums.fast.ai/t/share-your-work-here/27676/53 (https://forums.fast.ai/t/share-your-
work-here/27676/53)

https://github.com/kheyer/ML-DL-Projects/blob/master/Pets%20TSNE/pets_tsne.ipynb
(https://github.com/kheyer/ML-DL-Projects/blob/master/Pets%20TSNE/pets_tsne.ipynb)

In [80]:

In [81]:

In [82]:

interp.plot_top_losses(16, figsize=(15,11))

from sklearn.manifold import TSNE
import seaborn as sns
from sklearn import manifold, datasets
from sklearn.metrics.pairwise import pairwise_distances
from sklearn.metrics import confusion_matrix
from scipy.spatial.distance import squareform
from matplotlib.offsetbox import OffsetImage, AnnotationBbox
from matplotlib.ticker import NullFormatter
import PIL

preds = interp.probs
y = interp.y_true
losses = interp.losses

probs_trans = manifold.TSNE(n_components=2, perplexity=15).fit_transform(pre

In [83]:

In [84]:

Out[83]: x y labels

0 56.746861 -47.716217 3.0

1 -48.950485 -3.635262 0.0

2 -5.009671 3.444134 0.0

3 3.583071 -5.047320 0.0

4 -21.317375 -26.444191 0.0

prob_df = pd.DataFrame(np.concatenate((probs_trans, y[:,None]), axis=1), col
prob_df.head()

g = sns.lmplot('x', 'y', data=prob_df, hue='labels', fit_reg=False, legend=F



In [85]:

In [86]:

Out[85]: x y labels fname loss

0 56.746861 -47.716217 3.0 /storage/classify-data/images/grid028_00000_Em... -0.000000

1 -48.950485 -3.635262 0.0 /storage/classify-data/images/grid028_00001_Co... 0.003945

2 -5.009671 3.444134 0.0 /storage/classify-data/images/grid028_00002_Co... 0.046917

3 3.583071 -5.047320 0.0 /storage/classify-data/images/grid028_00003_Co... 0.048156

4 -21.317375 -26.444191 0.0 /storage/classify-data/images/grid028_00004_Co... 0.080974

prob_df['fname'] = data.valid_ds.items
prob_df['loss'] = losses
prob_df.head()

# modified to optionally filter by idxs
 
def visualize_scatter_with_images(scaled_data, df, idxs, figsize=(64,64), im
    scaled_data = scaled_data[idxs]
    df = df.iloc[idxs]
 
    fig, ax = plt.subplots(figsize=figsize)
    artists = []
    xx = (scaled_data[:,0])
    yy = (scaled_data[:,1])
    
    for (i,x,y) in zip(idxs,xx,yy):
        im = PIL.Image.open(df['fname'][i])
        im.thumbnail((64,64))
        img = OffsetImage(im, zoom=image_zoom, cmap='gray')
        ab = AnnotationBbox(img, (x, y), xycoords='data', frameon=False)
        artists.append(ax.add_artist(ab))
    ax.update_datalim(np.column_stack([xx,yy]))
    ax.autoscale()
    
#     fig.savefig(f'TSNE_{suffix}.jpg', bbox_inches = 'tight')
    return fig, ax

In [87]:

In [88]:

fig, ax = visualize_scatter_with_images(probs_trans, prob_df, range(len(prob
plt.show()

top_losses = prob_df['loss'].sort_values(ascending=False)[:20].index.values



In [89]:

Out[89]: x y labels fname loss

1676 9.071122 -30.559656 2.0 /storage/classify-data/images/grid029_00218_Fo... 9.658810

2390 -23.901659 -84.158226 2.0 /storage/classify-data/images/grid029_00880_Fo... 7.988194

2236 -23.951727 -52.477448 0.0 /storage/classify-data/images/grid029_00735_Co... 7.502900

3955 -24.108377 -86.259254 1.0 /storage/classify-data/images/grid042_00397_In... 6.312711

2984 0.596981 -33.512062 0.0 /storage/classify-data/images/grid029_01434_Co... 6.264024

1449 -51.541935 3.057128 1.0 /storage/classify-data/images/grid029_00008_In... 5.652417

2847 -9.209568 -26.133133 2.0 /storage/classify-data/images/grid029_01307_Fo... 5.629231

1460 -65.345856 4.596048 1.0 /storage/classify-data/images/grid029_00018_In... 5.316871

1477 -61.389629 17.511150 1.0 /storage/classify-data/images/grid029_00033_In... 5.279524

3560 -12.731878 -26.593086 2.0 /storage/classify-data/images/grid042_00037_Fo... 5.165102

2052 7.851956 -52.302036 1.0 /storage/classify-data/images/grid029_00566_In... 4.968777

2059 11.943326 -50.991638 1.0 /storage/classify-data/images/grid029_00572_In... 4.938722

1486 -1.297820 -50.215778 1.0 /storage/classify-data/images/grid029_00041_In... 4.802966

2546 -71.905006 29.902550 1.0 /storage/classify-data/images/grid029_01027_In... 4.712808

2484 -71.327370 29.958330 1.0 /storage/classify-data/images/grid029_00969_In... 4.699991

1494 -2.534295 -50.299793 1.0 /storage/classify-data/images/grid029_00049_In... 4.557220

2032 29.490635 71.660698 2.0 /storage/classify-data/images/grid029_00547_Fo... 4.507183

1917 -64.892960 39.141045 1.0 /storage/classify-data/images/grid029_00440_In... 4.495970

4086 -65.361137 -14.892749 2.0 /storage/classify-data/images/grid042_00516_Fo... 4.469344

1542 -46.737644 -61.083656 0.0 /storage/classify-data/images/grid029_00094_Co... 4.340938

prob_df.iloc[top_losses] In [90]:

Grad-CAM based on lesson6-pets-more

In [91]:

# show only images with top 20 losses
fig, ax = visualize_scatter_with_images(probs_trans, prob_df, top_losses, fi
plt.show()

m = learn.model.eval()



In [92]:

In [93]:

In [94]:

In [95]:

In [96]:

In [115]:

Out[92]: Category Incomplete

Out[94]: (None, torch.Size([1, 3, 512, 512]), torch.Size([1]))

Out[95]: (Category Incomplete, tensor([0], device='cuda:0'))

idx = 12
x,y = data.valid_ds[idx]
x.show()
data.valid_ds.y[idx]

xb, yb = data.one_item(x) # make batch with one item
xb_im = Image(data.denorm(xb)[0]) # denorm item into viewable image
xb = xb.cuda() # load on gpu

xb_im.show(), xb.shape, yb.shape

y, yb

from fastai.callbacks.hooks import *
import pdb

def hooked_backward(cat=y):
#     pdb.set_trace()
    with hook_output(m[0]) as hook_a: # set activation hook
        with hook_output(m[0], grad=True) as hook_g: # set gradient hook
            preds = m(xb) # forward pass
            preds[0,int(cat)].backward() # backward pass
    return hook_a, hook_g

In [116]:

In [117]:

In [118]:

In [119]:

In [120]:

In [121]:

In [122]:

In [123]:

Out[118]: torch.Size([2048, 16, 16])

Out[119]: <matplotlib.image.AxesImage at 0x7f5229f17630>

Out[120]: torch.Size([16, 16])

Out[121]: <matplotlib.image.AxesImage at 0x7f5229e7f080>

Out[123]: torch.Size([2048, 16, 16])

hook_a, hook_g = hooked_backward()

acts = hook_a.stored[0].cpu()

acts.shape

plt.imshow(acts[0])

avg_acts = acts.mean(0) # get the "pixel"-wise mean of activations (avg acro
avg_acts.shape

plt.imshow(avg_acts)

grad = hook_g.stored[0][0].cpu()

grad.shape



In [124]:

In [125]:

In [126]:

In [127]:

In [129]:

In [130]:

Out[124]: (torch.Size([2048, 16, 16]), torch.Size([2048]))

Out[125]: torch.Size([2048, 1, 1])

Out[126]: torch.Size([16, 16])

grad_chan = grad.mean(1).mean(1) # get the avg of grads for each channel
grad.shape, grad_chan.shape

grad_chan[...,None,None].shape # make 2 more axes to be same shape as acts

(acts*grad_chan[...,None,None]).mean(0).shape

mult = (acts*grad_chan[...,None,None]).mean(0)

def show_heatmap(hm,interpol='bilinear',cmap='magma'):
    _, ax = plt.subplots()
    xb_im.show(ax)
    ax.imshow(hm, alpha=0.6, extent=(0,512,512,0), interpolation=interpol,cm

show_heatmap(mult)

In [134]:

In [135]:

fig, axes = plt.subplots(5,5, figsize=(20,20))
for j, ax in enumerate(axes.flat):
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
    xb_im.show(ax=ax)
    ax.set_title('Channel '+str(j)+ '\n'+'grad_chan value: '+str(grad_chan.n
    ax.imshow(acts[j], alpha=0.6, extent=(0,512,512,0), interpolation='bilin
#     ax.imshow([importance_idxs[j]]), alpha=0.6)
plt.show()

# thanks @henripal, from https://github.com/henripal/maps/blob/master/nbs/bi
import scipy.ndimage
 
def upsample(heatmap, zoom=32):
    upsampled = scipy.ndimage.zoom(heatmap, zoom)
    upsampled = (upsampled - np.min(upsampled))/((np.max(upsampled) - np.min
    return upsampled



In [136]:

In [137]:

In [138]:

In [143]:

Out[136]: grad_chan

0 4.844370e-05

1 9.563417e-06

2 -7.725328e-07

3 3.047246e-05

4 8.112050e-06

Out[137]: array([ 101,  220, 1270,  631, ...,   74,  844, 1954,  660])

Out[138]: grad_chan

101 0.005839

220 0.003543

1270 0.002052

631 0.001911

1813 0.001636

Out[143]: <matplotlib.image.AxesImage at 0x7f52295b50b8>

grad_df = pd.DataFrame(grad_chan.numpy(), columns=['grad_chan'])
grad_df.head()

importance_idxs = grad_df.sort_values(by='grad_chan',ascending=False).index.
importance_idxs

grad_df.iloc[importance_idxs].head()

# heatmap with most important 100 activations (ranked by grad_chan)
fm_up = [upsample(fm) for fm in acts[importance_idxs[:100]]]
xb_im.show(figsize=(5,5))
plt.imshow(np.mean(fm_up, axis=0),alpha=0.6, cmap='magma')

In [144]:

Test time

In [145]:

In [146]:

In [147]:

Out[144]: <matplotlib.image.AxesImage at 0x7f5229579940>

Out[147]: ['Complete', 'Incomplete', 'Foundation', 'Empty']

# heatmap with least important 100 activations (ranked by grad_chan)
fm_up = [upsample(fm) for fm in acts[importance_idxs[-100:]]]
xb_im.show(figsize=(5,5))
plt.imshow(np.mean(fm_up, axis=0),alpha=0.6, cmap='magma')

data.export()

empty_data = ImageDataBunch.load_empty(path, tfms=tfms, size=512).normalize(
learn = create_cnn(empty_data, models.resnet50)

empty_data.classes



In [148]:

In [149]:

In [161]:

In [162]:

Out[148]: Sequential(
 (0): Sequential(
   (0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 
3), bias=False)
   (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_run

ning_stats=True)
   (2): ReLU(inplace)
   (3): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_

mode=False)
   (4): Sequential(
     (0): Bottleneck(
       (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=

False)
       (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, tra

ck_running_stats=True)
       (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), paddi

ng=(1, 1), bias=False)
       (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, tra

ck_running_stats=True)
( 3) C 2d(64 256 k l i (1 1) t id (1 1) bi

13552

learn.load('20181206-rn50class-stage2-best')
learn.model.eval()

grid_num = '119'
test_path = Path(f'/storage/znz-classify-001/demo_test/test_{grid_num}')
test_fns = [o for o in sorted(test_path.iterdir()) if '.jpg' in o.name]
print(len(test_fns))

img = open_image(test_fns[100])
img.show()
plt.show()

img = img.apply_tfms(tfms[1],resize_method=ResizeMethod.SQUISH, size=512, bs
img.show()

In [165]:

In [152]:

In [154]:

In [155]:

In [156]:

Out[165]: (Category Complete,
tensor(0),
tensor([9.6798e-01, 3.0493e-02, 1.4308e-03, 9.5591e-05]))

100%|██████████| 100/100 [00:04<00:00, 20.55it/s]

Out[156]: array([[0.99, 0.01, 0.  , 0.  ],
      [0.99, 0.01, 0.  , 0.  ],
      [0.51, 0.49, 0.  , 0.  ],
      [0.17, 0.04, 0.79, 0.  ],
      ...,
      [1.  , 0.  , 0.  , 0.  ],
      [0.97, 0.01, 0.  , 0.02],
      [0.95, 0.04, 0.  , 0.  ],
      [0.33, 0.66, 0.01, 0.  ]], dtype=float32)

learn.predict(img)

from tqdm import tqdm

preds = []
pred_classes = []
for fn in tqdm(test_fns[:100]):
    try: 
        img = open_image(fn)
        img = img.apply_tfms(tfms[1],resize_method=ResizeMethod.SQUISH, size
        pred_class,pred_idx,outputs = learn.predict(img)
        preds.append(list(to_np(outputs)))
        pred_classes.append(pred_class)
    except Exception as exc: 
        print(f'{exc}') 
        preds.append([-1,-1,-1,-1])
        pred_classes.append('error')

img.show()

np.round(preds,2)



In [157]:

In [158]:

In [159]:

Out[157]: array([[0.99, 0.01, 0.  , 0.  ],
      [0.99, 0.01, 0.  , 0.  ],
      [0.51, 0.49, 0.  , 0.  ],
      [0.17, 0.04, 0.79, 0.  ],
      ...,
      [1.  , 0.  , 0.  , 0.  ],
      [0.97, 0.01, 0.  , 0.02],
      [0.95, 0.04, 0.  , 0.  ],
      [0.33, 0.66, 0.01, 0.  ]], dtype=float32)

Out[159]: Complete Incomplete Foundation Empty fname predicted_class

0 0.985044 0.013088 0.001585 0.000283 119_00000_test.jpg Complete

1 0.986397 0.013174 0.000414 0.000015 119_00001_test.jpg Complete

2 0.506189 0.490988 0.002788 0.000035 119_00002_test.jpg Complete

3 0.166216 0.043905 0.789644 0.000234 119_00003_test.jpg Foundation

4 0.953893 0.045666 0.000435 0.000005 119_00004_test.jpg Complete

np.round(preds,2)

df = pd.DataFrame(data=preds, columns=data.classes)
df['fname'] = [o.name for o in test_fns[:len(preds)]]
df['predicted_class'] = pred_classes

df.head()

In [160]:

Complete 0.9850437641143799

Complete 0.9863974452018738

Complete 0.5061893463134766

Foundation 0.789644181728363

Complete 0.9538934826850891

for i in range(10):
    img = open_image(test_path/df.iloc[i]['fname'])
    print(df.iloc[i]['predicted_class'], df.iloc[i][df.iloc[i]['predicted_cl
    img.show()
    plt.show()



Foundation 0.9689040780067444

Complete 0.9510454535484314

Incomplete 0.5464768409729004

Complete 0.586933970451355

In [220]:

Complete 0.9919455647468567

df.to_csv('preds.csv',index=False)


