

DIGIEDUHACK SOLUTION CANVAS

Title of the solution: **NexEat**

Team name:

NutriNov

Challenge addressed: **The Food Challenge**

Challenge category:

AI and emerging technologies for education

Background of the team:

(multiple selections possible in case of mixed teams)

Higher Education Students

Teachers

Others (please specify)

Researchers

Primary School Students

Professionals

Secondary School Students

Solution description

We are proposing a digital tool that links a student's real schedule with personalized meal recommendations using open nutritional data. Its main components are calendar integration, a lightweight AI recommendation engine and an Open Food Facts database. The goal is to reduce stress, save time and support healthier routines. The implementation plan includes: creating the prototype interface, connecting calendar data, adding the recommendation logic and running a small pilot with students. This requires a small development team, basic cloud hosting and access to open datasets. Key barriers may include privacy permissions and differences in food availability.

The solution enhances digital education by improving students' wellbeing and helping them manage their daily energy and routines more effectively. Success can be measured through adoption, user satisfaction, improved eating consistency and the relevance of recommendations.

Target group

Our main target group is students who juggle demanding academic schedules, work responsibilities and very limited time for meal planning. They benefit from the app because it reduces daily stress, saves time and supports healthier eating without requiring extra effort. This solution is especially relevant for them, since many struggle with irregular routines, low energy and limited access to quick and nutritious options. To fully address their needs, we plan to involve students in testing early prototypes, gather feedback on their eating habits and time constraints, and refine both the recommendations and the interface based on their real experiences.

Innovativeness

Our solution is original because it automatically transforms a student's real weekly schedule into personalized, ready-to-eat meal suggestions powered by open nutritional data. Unlike existing tools that only manage time, such as Google Calendar or Notion, or apps that focus only on food tracking like MyFitnessPal, our system removes friction instead of adding extra steps. Students don't need to plan, search or log anything. The app understands their classes, work shifts and energy needs, then suggests healthy meals they can buy or prepare based on the actual time they have. No existing solution connects academic calendars, open food datasets and nutrition recommendations in one simple, automated workflow designed specifically for student life. This makes our approach more effective, easier to use and genuinely supportive for busy students.

Transferability

Yes, the solution can be used in many other education and learning contexts. The core concept is to analyze a learner's schedule and provide personalized, practical recommendations, which can apply far beyond nutrition. The same approach could guide study planning, suggest tutoring moments, or prompt short wellbeing activities based on real availability. It can be used in universities, vocational training and adult education, since the logic remains the same: offer clear, credible and timely guidance that fits the learner's daily rhythm.

Sustainability

Once the prototype is ready, we plan to integrate real calendar data, refine the user experience and add machine learning so recommendations become more accurate and aligned with credible nutritional guidelines. We will also collaborate with campus food services to promote healthier and more accessible choices for students. In the mid and long term, the same system could support study planning and wellbeing reminders, and the application could be replicated across institutions through a simple cloud-based model that helps create healthier learning environments.

Context

We aim to solve the growing problem of students juggling academic schedules, work and irregular eating habits, which affects their energy and performance. Our solution aligns with DigiEduHack 2025 by using calendar-based automation, artificial intelligence, open nutritional datasets and real-time schedule analysis to support healthier and more sustainable learning routines. It also helps students apply the principles of the Canadian Food Guide in their daily lives by reducing confusion, simplifying choices and offering practical, credible recommendations adapted to their weekly rhythm. By combining calendar integration, AI-generated suggestions and nutritional scoring from open data sources, our solution directly addresses the organiser's challenge by creating a smarter digital education environment that improves wellbeing and supports students in managing their daily routines more effectively.

Impact

Our solution supports change in education by helping students manage their energy, stress and daily routines through personalized meal suggestions linked to their real schedules. This improves wellbeing, supports academic performance and reduces the burden on students who study and work at the same time. Socially, it promotes healthier habits and easier access to nutritious options. Environmentally, using Open Food Facts encourages choices with better nutritional and ecological profiles. For example, on a busy day the app can guide a student toward a quick, healthy meal with lower environmental impact instead of relying on ultra-processed food. Over time, this can influence habits on campus and promote a more sustainable food culture.

Team work

Eleonore is a Computer Science student at Laval University with a certificate in Entrepreneurship and Sustainable Development. She brings a strong interest in AI, sustainability and student wellbeing, along with analytical skills that help connect technology with responsible practices.

William has a technical diploma in Computer Science and is completing a bachelor's degree in the same field at Laval University. With experience in web and mobile development and a strong interest in AI and health, he contributes solid technical skills for building functional and reliable prototypes.

Xavier has a background in graphic design and is now studying Computer Science at Laval University. He has worked on several personal entrepreneurial projects and brings creativity, visual design expertise and an interest in sports and health, which are essential for creating an engaging user experience.

Adriana holds a degree in Industrial Engineering and a master's in administrative engineering and is currently studying Software Engineering at Laval University. She brings experience in entrepreneurship, innovation and project management, with a strong focus on AI and time management in daily life.

As students, we believe we are the best positioned to create a solution that reflects our needs and represents our daily reality. We understand the challenges of balancing classes, work, nutrition and wellbeing better than anyone. As a team, we also plan to collaborate with the Bachelor of Nutrition program, use information from the « Bureau d'entraide en nutrition de l'Université Laval » (BEN), and rely on up-to-date nutritional datasets to enhance the accuracy and relevance of our recommendations. We intend to continue working together after the hackathon to build the full application and integrate AI at its core.

Describe it in a tweet

A smart app that automatically plans meals and snacks around a student's real schedule. It uses their timetable and preferences to suggest quick, healthy options and personalized nutritional recommendations designed for busy student life.